---- GENERAL INFORMATION -----

DATA TITLE: SEM/EDS analysis of surfaces of ferritic Fe-Cr-Al-Mo alloy Kanthal APMT and Cr-

Mo-V steel T91 (UNS: K90901) after oxidation at 1200 C for 2 h

PROJECT TITLE: Materials Characterization of High-Temperature Oxidation on ferritic Fe-Cr-

Al-Mo alloy Kanthal APMT and Cr-Mo-V steel T91 (UNS: K90901)

DATA ABSTRACT: Backscattered (BSE) and secondary electron (SE) images of surfaces on ferritic Fe-Cr-Al-Mo alloy Kanthal APMT and Cr-Mo-V steel T91 (UNS: K90901) before and after oxidation at 1200 C for 2 h in steam or air. In addition, energy-dispersive x-ray spectroscopy (EDS) maps are included, noting the elemental distribution of Al, O, and Fe on surfaces of Kanthal APMT, along with generated reports used to compare of major composition regimes observed on surface of air- and steam-oxidized specimens with respect to the control. For T91, raw Electron Microscopy Society of America (EMSA) files for EDS spectra acquired from sites of interest depicted in the included images are also available.

AUTHORS:

Author: Trishelle M. Copeland-Johnson

ORCID: 0000-0002-0107-2212 Institution: Iowa State University Email: tcopelan@iastate.edu

Author: Charles K. A. Nyamekye

ORCID: N/A

Institution: Iowa State University, The Ames Laboratory

Email: nyamekye@iastate.edu

Author: Simerjeet Gill

ORCID: N/A

Institution: Brookhaven National Laboratory

Email: gills@bnl.gov

Author: Lynne Ecker

ORCID: N/A

Institution: Brookhaven National Laboratory

Email: lecker@bnl.gov

Author: Nicola Bowler

ORCID: N/A

Institution: Iowa State University Email: nbowler@iastate.edu

Author: Emily A. Smith

ORCID: N/A

Institution: Iowa State University, The Ames Laboratory

Email: esmith1@iastate.edu

Author: Raul B. Rebak

ORCID: N/A

Institution: General Electric Research

Email: rebak@ge.com

Corresponding author: Simerjeet Gill (gills@bnl.gov)

ASSOCIATED PUBLICATIONS:

T. Copeland-Johnson, C.K.A. Nyamekye, S.K. Gill, L. Ecker, N. Bowler, E.A. Smith, R.B. Rebak, Characterization of Kanthal APMT and T91 oxidation at beyond design-basis accident temperatures, Corros. Sci. (2020).

COLLECTION INFORMATION:

Time period(s): 2017-2019

Location(s): Iowa State University, Brookhaven National Laboratory

---- FILE DIRECTORY -----

---- FILE LIST----

File Name	Description
EDS_APMT_Air.jpg	BSE image taken at the surface of Kanthal APMT after
	oxidation in air
EDS_APMT_Air.rtf	EDS report generated from elemental analysis of
	EDS_APMT_Air.jpg

EDS_APMT_Air_Al.jpg	EDS elemental map generated showing the distribution of
500 40147 4: 5	Al in EDS_APMT_Air.jpg
EDS_APMT_Air_Fe.jpg	EDS elemental map generated showing the distribution of
	Fe in EDS_APMT_Air.jpg
EDS_APMT_Air_O.jpg	EDS elemental map generated showing the distribution of
	O in EDS_APMT_Air.jpg
EDS_APMT_Control.rtf	EDS report generated from elemental analysis of a site of
	interest captured on the surface of a control Kanthal
	APMT specimen
EDS_APMT_Steam.jpg	BSE image taken at the surface of Kanthal APMT after
	oxidation in steam
EDS_APMT_Steam.rtf	EDS report generated from elemental analysis of
	EDS_APMT_Steam.jpg.
EDS_APMT_Steam_Al.jpg	EDS elemental map generated showing the distribution of
5	Al in EDS_APMT_Steam.jpg
EDS_APMT_Steam_Fe.jpg	EDS elemental map generated showing the distribution of
	Fe in EDS_APMT_Steam.jpg
EDS_APMT_Steam_O.jpg	EDS elemental map generated showing the distribution of
	O in EDS_APMT_Steam.jpg
EDS_T91_Air.jpg	BSE image taken at the surface of T91 after oxidation in
	air
EDS_T91_Air.txt	Spectra data acquired from site of interest shown in
	EDS_T91_Air.jpg
EDS_T91_Steam.jpg	BSE image taken at the surface of T91 after oxidation in
	steam
EDS_T91_Steam.txt	Spectra data acquired from site of interest shown in
	EDS_T91_Steam.jpg
SEM_APMT_Air.jpg	BSE image taken at the surface of Kanthal APMT after
" •	oxidation in air
SEM_APMT_Air_Metadata.txt	Metadata of imaging settings used to acquire
	SEM_APMT_Air.jpg
SEM_APMT_Steam.jpg	BSE image taken at the surface of Kanthal APMT after
	oxidation in steam
SEM_APMT_Steam_Metadata.txt	Metadata of imaging settings used to acquire
	SEM_APMT_Steam.jpg
	OEM_/ II WIT_Otodini.jpg

---- METHODS AND MATERIALS ----

---- DATA COLLECTION METHODS -----

For EDS_APMT_Steam.rtf, EDS_APMT_Control.rtf, and EDS_APMT_Air.rtf: Reports generated in the INCA software suite an image of the site of interest, numbered locations were elemental analysis information was extracted within that site of interest, a table listing the sites and respective elemental wt% information (total normalized to 100 wt%). Three of those sites were selected for INCA to calculate the statistics located at the bottom of the table (i.e. mean, standard (std.) deviation, max, and min).

For EDS_T91_Steam.txt and EDS_T91_Air.txt: Spectra acquired from sites of interest featured in EDS_T91_Steam.jpg and EDS_T91_Air.jpg, respectively, were exported in EMSA format, including all data acquisition metadata, location of element labels on spectra (i.e. OXINSTLABEL: [atomic number], [energy (eV)], [element]), and the spectral data in commaseparated value format.

---- DATA PROCESSING METHODS -----

For EDS_APMT_Steam.rtf, EDS_APMT_Control.rtf, and EDS_APMT_Air.rtf. The std. deviation information was used to calculate the standard error of the mean O, Al, and Fe elemental wt %. The mean and standard error for O, Al, and Fe for control, air-oxidized, and steam-oxidized APMT sites of interest were then plotted in Origin as the bar graphs shown in Figure 3c) and f) of the associated publication.

For EDS_T91_Steam.txt and EDS_T91_Air.txt: EMSA data files were plotted in Origin to generate Figure 3i) in associated publication.

----- SOFTWARE -----

Name: OriginLab 2016

Version: 64-bit

System Requirements:

Windows: Operating System: 64-bit (x64) Microsoft Windows® 7 SP1, Windows® 8, Windows® 8.1, Windows® 10; Processor: 1.6 GHz 64-bit (x64); Memory: 4 GB RAM (8 GB recommended); Hard Disk Space: 2.0 GB of free hard disk space for program installation + Help files (does not include data storage); Other hardware: USB port or DVD drive (if installing from USB stick or DVD); Browser: The Learning Center dialog requires Internet Explorer version 11.

Mac: Mac users can run Origin by using Microsoft Windows® via Boot Camp or within OS X using third-party virtual machine software.

URL: http://www.originlab.com Developer: OriginLab Corporation

Additional Notes: N/A

Name: INCATM - The Microanalysis Suite

Version: 4.15

System Requirements: N/A URL: https://www.oxinst.com Developer: Oxford Instruments

Additional Notes: N/A

----- EQUIPMENT -----

Manufacturer: JEOL

Model: 7600F

Embedded Software/Firmware Name: (if applicable) N/A Embedded Software/Firmware Version: (if applicable) N/A

Additional Notes: Equipped with Oxford Instruments EDS 80 mm² X-Max silicon drift detector

(129 eV resolution) operated through the INCA software suite.

----- LICENSING -----

This data is protected under Attribution 4.0 International (CC BY 4.0) with the following permissions:

- Share copy and redistribute the material in any medium or format
- **Adapt** remix, transform, and build upon the material for any purpose, even commercially.
- Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions You may not apply legal terms or technological measures
 that legally restrict others from doing anything the license permits.