Using Random Forest Models for SDS-Copy1

Using Random Forest Models for SDS - Report

Muhammad Mohsin Raza (original development) & Chris Harding (code review and documentation
updates)

This notebook documents how to create an optimized random forest classification model, based
on multi-channel satellite imagery, ground-based crop rotation information and field quadrat
polygons.

ESRI's ArcGIS raster module (spatial analyst) offers the Train Random Trees Classifier tool,
which we could have used in our project. However, it is rather a "black box" that does not
disclose any of the internal details, such as the parameters used to configure the classifier. Thus,
rather than simply "believing" the ESRI tool, we opted to instead implement our own Python code
(reported on here), which gives us full control over the details and offers full tranparency into the
inner workings of the procedure.

ESRI does provide an example of a similar process to Predict Seagrass Habitats with Machine
Learning which served as a starting point for our procedure.

In this report we use example data to describe the procedure step by step, starting with
preparing the quadrat polygons so that they carry summary information from the satellite
imagery.

Our example uses 2016 data but we also provide equivalent data for 2017 and 2018.

We have analyzed the data using different combinations of variables, i.e., satellite imagery
bands, NDVI, and soybean rotation information.

For model parameter tuning such as the number of trees, variables sampled at each split and
node size, etc., we used Grid-based search method with 5 fold cross-validation.

To give a measure of quality for a classifier with a certain set of model parameters, we calculate
precision, specificity, sensitivity, accuracy, kappa statistics and variable permutation importance.
These can quickly be re-calculated for different sets of parameters.

Finally, we show how to create node plots of the trees contained in a classifier.

Preparation

The random forest classification requires a set of polygons in a shapefile or in a GeoDB (feature
class).

Each polygon represents a quadrant. Each quadrant requires values for explanatory variables
(here: mean reflectance for each of the four bands used and the type of crop rotation) and
response variable (here: presence or absence of SDS found later in this quadrant).

A separate notebook called Prepare data for random forest classification.ipynb overlays the
quadrant polygons over a satellite image, extracts summary data (e.g. the mean of all cells
covered by a quadrant) for each of the 4 channels, and joins it to the polygon's attribute table.
here, zonal statistics for the feature class Soybean_Quadrats_2016 (polygons) was extracted
from the raster cr_T20160705_120520_0c65_3B_AnalyticMS

the zonal statistics were added (joined) to the feature class and saved as a new feature class
inside a geoDB

Loading [MathJaxjjaxioutputHTML-Css/jaxjs ||S called SDS_detection_ArcGISPro_project.gdb the polygon feature class inside it

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/train-random-trees-classifier.htm
https://learn.arcgis.com/en/projects/predict-seagrass-habitats-with-machine-learning/lessons/perform-random-forest-classification.htm
https://learn.arcgis.com/en/projects/predict-seagrass-habitats-with-machine-learning/lessons/perform-random-forest-classification.htm

Using Random Forest Models for SDS-Copy1
is called Soybean_Quadrats_2016_zstats_cr_T20160705_120520_0c65_3B_AnalyticMS
o Alternatively, the shapefile
Soybean_Quadrats_2016_zstats_cr_T20160705_120520_0c65_3B_AnalyticMS.shp may be
used (note that the workspace will be the current folder instead of the geoDB).

Python modules required

e Several 3. party python modules are required, which are imported in the next cell.

e If you run ArcGIS Pro, clone the arcgispro-py3 environment and add the required modules

¢ Alternativly, you can use Anaconda, which should recognize and show the cloned environment

e (Make sure to run jupyter in that cloned environment, not your base environment!)

e numpy, pandas, and matplotlib are typically included in Anaconda and arcgispro-py3 but you
liekly have to install the other packages. If you have Anaconda, go into your cloned envirnment,
switch search to "Not installed", type in the package name, check it and hit apply to have conda
install it. To use pip instead, open a terminal (left click the arrow next to your environment and hit
Terminal) and type pip install <package>

e seaborn:

= conda: https://anaconda.org/anaconda/seaborn
= pip: https://pypi.org/project/seaborn/
o scikit-learn:
= conda: https://anaconda.org/anaconda/scikit-learn

» pip: https://pypi.org/project/scikit-learn/
= (confusingly, although scikit-learn is imported as sklearn, there is no module called sklean

for installation, it is called scikit-learn)

e eli5 (https://eli5.readthedocs.io/en/latest/overview.html) is only available via conda-forge or pip. It
is only used in one cell to print out the Variable permutation importance, so you have trouble
installing it you could skip it.

= conda: https://anaconda.org/conda-forge/elib

= pip: https://pypi.org/project/elis/
e graphviz and pydotplus are only used to plot a decision tree. Note that the graphviz moduls is

called python-graphviz, not graphviz in anaconda. Again, if you have trouble installing it, you can
skip it. You won't be able to choose a specific tree but we have included an example of a tree
plot.
= conda: https://anaconda.org/conda-forge/python-graphviz https://anaconda.org/conda-
forge/pydotplus

= pip: https://pypi.org/project/graphviz/ https://pypi.org/project/pydotplus/
¢ If you have ArcGIS (Desktop or Pro) you already have arcpy. If you don't have ArcGIS, you

cannot simply install arcpy via anaconda as it is not freely available outside of ArcGIS
¢ If you do not have ArcGIS, you can still use most of this code but you will need to somehow get
the attribute table in something like xIs or csv format instead.
= as an example, the Exel file
Soybean_Quadrats_2016_zstats_cr_T20160705_120520_0c65_3B_AnalyticMS.xIs
contains the fields/attributes from the polygon feature class with the calculated zonal
statistics (exported from ArcGIS). The fields (columns) of interest for this case are (the rest
is not used):
= Quadrat: 4 digit Id of the quadrat polygon
= Rotation: type of crop rotation use at the time of data collection: S2: 2 year rotation, S3: 3
year rotation, etc.

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

https://anaconda.org/anaconda/seaborn
https://pypi.org/project/seaborn/
https://anaconda.org/anaconda/scikit-learn
https://pypi.org/project/scikit-learn/
https://eli5.readthedocs.io/en/latest/overview.html
https://anaconda.org/conda-forge/eli5
https://pypi.org/project/eli5/
https://anaconda.org/conda-forge/python-graphviz
https://anaconda.org/conda-forge/pydotplus
https://anaconda.org/conda-forge/pydotplus
https://pypi.org/project/graphviz/
https://pypi.org/project/pydotplus/

Using Random Forest Models for SDS-Copy1

In

In

MEAN_1: mean of pixel in band 1 (Red) inside the quadrat
= MEAN_2: mean of pixel in band 2 (Green) inside the quadrat
= MEAN_3: mean of pixel in band 3 (Blue) inside the quadrat
= MEAN_4: mean of pixel in band 4 (near Infrared) inside the quadrat
s SDS: state of quadrat: 1 = diseased with SDS, 0 = healthy
= As you cannot run arcpy methods, you will need to instead have to read in the xlIs table into
pandas (see commented out cell)
= |n order to list the file names in the xls file, the xIrd module is used, which needs to be
installed as well (only if you don't have ArcGIS!)
o conda: https://anaconda.org/anaconda/xird
o pip: https://pypi.org/project/xlrd/

import numpy as NUM
import numpy as np

import pandas as PD
import matplotlib.pyplot as PLOT

import seaborn as SEA

from sklearn.ensemble import RandomForestClassifier # module to install is
called scikit-learn

only needed for Variable permutation importance
import eli5

only needed to plot a node-graph of a decision tree

import graphviz
import pydotplus

import arcpy +# comment out if you don't have ArcGIS

Part 1: Exploratory data analysis

Read in Data set

e assuming a polygon feature class or shapefile is used, list the names of its fields (attributes)

Set the workspace environment to local file geodatabase
arcpy.env.workspace = "SDS project data.gdb"

n n

#arcpy.env.workspace = ". # current folder, contains a shapefile

Select the featureclass and 1list its fields

feature class = 'Soybean Quadrats 2016 zstats cr T20160705 120520 0c65 3B
AnalyticMS' # feature class in geoDB
#feature class = "Soybean Quadrats 2016 zstats cr T20160705 120520 0c65 3B

_AnalyticMS.shp" # shapefile

fields = arcpy.ListFields (feature class)
for field in fields:
print (field.name, " type:", field.type)

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

https://anaconda.org/anaconda/xlrd
https://pypi.org/project/xlrd/

Using Random Forest Models for SDS-Copy1
OBJECTID type: OID

In

Shape type:

Geometry

Id type: Integer
Quadrat type: SmalllInteger

Block type:

Double

Plot type: Double
Rotation type: String
SDS type: Integer

Shape Length

type: Double

Shape Area type: Double
Quadrat 1 type: Smalllnteger

COUNT type:

Integer

AREA type: Double

MEAN 1 type:

STD 1 type:

MEAN 2 type:

STD 2 type:

MEAN 3 type:

STD 3 type:

MEAN 4 type:

STD 4 type:

Non-ArcGIS
the variable
import xlrd
table name =
lyticMS.x1s"

Double
Double
Double
Double
Double
Double
Double
Double

alternative: use a xl1s file and look at its first row to see
names

"Soybean Quadrats 2016 zstats cr T20160705 120520 0c65 3B Ana

workbook = xlrd.open workbook (table name)
sheet = workbook.sheet by index(0) # assumes that your table in the first

worksheet

row = sheet.row(0) # assumes that the first row contains the variable name

S

for cell in row:
print (cell.value)

OBJECTID
Id

Quadrat
Block

Plot
Rotation
SDS

Shape Length
Shape Area
Quadrat 1
COUNT
AREA
MEAN 1
STD 1
MEAN 2
STD_2
MEAN 3
STD 3
MEAN 4
STD 4

Define explanatory and response variables

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1
e Explanatory variables are used to predict the response variable SDS
e We use zonal statistics for each band and the type (category) of crop rotation as explanatory
variables with values for each quadrant read in from the attribute table and later add the NDV
value
e SDS is a binary variable that records the response (ground thruth) found in each quadrant at the
end of the season:
= 1: SDS was found in the quadrant
= (0: SDS was not found in the quadrant
¢ Note the names of all variables must match the names used in the table!

In [5]: | # Names of explanatory variables (used to predict the response variable)
predictVars = ['MEAN 1', 'MEAN 2', 'MEAN 3', 'MEAN 4', 'Rotation']
#predictVars = ['STD 1', 'STD 2', 'STD 3', 'STD 4', 'Rotation']
print ("exploratory variables:")
for e in predictVars: print (e)

name of response Variable
classVar = ['SDS']
print ("\nrespones variable:", classVar[0])

list with all variables
allVars = predictVars + classVar

exploratory variables:
MEAN 1

MEAN 2

MEAN 3

MEAN 4

Rotation

respones variable: SDS

In [6]: | # Convert feature class attribute table to numpy array

also get Quadrat id as '"name" for each polyon. This isn't use in the mod
el

but is useful for cross checking with a GIS

column names = ["Quadrat"] + allVars

trainFC = arcpy.da.FeatureClassToNumPyArray (feature class, column names)
print (column names)

print (trainFC[:5]) # show first 5 rows

['Quadrat', 'MEAN 1', 'MEAN 2', 'MEAN 3', 'MEAN 4', 'Rotation', 'SDS']
[(1201, 2460.22222222, 1932.22222222, 1331.66666667, 2046.55555556, 's4',

1)

(1220, 2420.55555556, 1881. , 1252.22222222, 2003.44444444, 'S4',
1)

(1202, 2438. , 1897.88888889, 1321.55555556, 2104.44444444, 's54',
1)

(1219, 2374.22222222, 1848.33333333, 1208.11111111, 2070.66666667, 'S4"',
0)

(1203, 2428.77777778, 1875.44444444, 1295.22222222, 2167.77777778, 'sS4',
1)]

In [7]: | # Convert numpy array to Pandas dataframe

data = PD.DataFrame (trainFC, columns=column names)

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

In [8]: | # Non-ArcGIS only:
make dataframe from x1s
#data = PD.read excel (table name, usecols=column names) # use only these c
olumns, but they may be in a different order!
#data = data.reindex (column names, axis=1) # re-—-arrange so 1t matches the
column names 1list
#display (data.head())
In [9] # use better names for the band numbers (NIR = Near Infrared)
new names = {'MEAN 1': 'Blue', 'MEAN 2': 'Green', 'MEAN 3': 'Red', 'MEAN 4
': 'NIR'}
data.rename (columns=new names, inplace=True)
display(data.head())
Quadrat Blue Green Red NIR Rotation SDS
0 1201 2460.222222 1932.222222 1331.666667 2046.555556 S4 1
1 1220 2420.555556 1881.000000 1252.222222 2003.444444 S4 1
2 1202 2438.000000 1897.888889 1321.555556 2104.444444 S4 1
3 1219 2374.222222 1848.333333 1208.111111 2070.666667 S4 0
4 1203 2428.777778 1875.444444 1295.222222 2167.777778 S4 1
In [10] # Calculate NDVI and put it in a new column

display(data.head())

Quadrat MEAN_1 MEAN_2 MEAN_3 MEAN_4 Rotation SDS
0 1201 2460.222222 1932.222222 1331.666667 2046.555556 sS4 1
1 1220 2420.555556 1881.000000 1252.222222 2003.444444 s4 1
2 1202 2438.000000 1897.888889 1321.555556 2104.444444 sS4 1
3 1219 2374.222222 1848.333333 1208.111111 2070.666667 s4 0
4 1203 2428.777778 1875.444444 1295222222 2167.777778 sS4 1

ndvi = (data["NIR"] - data["Red"]) / (data["NIR"] + data["Red"])
data.insert (5, 'NDVI', ndvi)

display(data.head())

Quadrat Blue Green Red NIR NDVI Rotation SDS

0 1201 2460.222222 1932.222222 1331.666667 2046.555556 0.211617 S4

1 1220 2420.555556 1881.000000 1252.222222 2003.444444 0.230743 S4

2 1202 2438.000000 1897.888889 1321.555556 2104.444444 0.228514 S4

3 1219 2374.222222 1848.333333 1208.111111 2070.666667 0.263072 S4

4 1203 2428.777778 1875.444444 1295.222222 2167.777778 0.251965 S4

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

Correlation Heatmap of all numeric variables

e makes a new data frame (num_df) with only numeric variables
e calculates correlation coefficiants beween all given numeric variables

e Shows pearson (parametric), kendal Tau (non-parametric) or Spearman (rank ordered)

correlation

¢ Plots the matrix as a heatmap with a divergent color ramp

In [11]: numeric vars = ["Blue", "Green", "Red", "NIR", "NDVI"]
#numeriqﬁvars = ["Blue'", "Green'", "Red'", "NIR'"]
series = [data[name] for name in numeric vars]
num df = PD.concat (series, axis=1)
num_df.describe () # summary statistics

Qut[l1l]:

Blue Green Red NIR NDVI
count 240.000000 240.000000 240.000000 240.000000 240.000000
mean 2476.556134 1945.315278 1337.149421 2207.674884 0.244092
std 54.578252 57.336984 68.858548 178.922530 0.046962
min 2356.444444 1824.555556 1188.166667 1825.888889 0.135778
25% 2434.416667 1909.000000 1297.694444 2083.277778 0.210752
50% 2474944444 1941.000000 1334.388889 2172.722222 0.240233
75% 2508.541667 1980.305556 1380.243056 2309.861111 0.267288
max 2640.666667 2128.444444 1572.555556 2699.444444 0.367094
In [12]: for m in ("pearson", "spearman", "kendall"):
print ("\n", m, "correlation coefficient:")
corr = num df.corr (method=m)

uncomment these for larger plots
#PLOT. figure (figsize=(12, 12))
#PLOT.rc ('font', size=12) # kludgy way to set fontsize for plots
ax = SEA.heatmap (corr,

label=m,

cmap=SEA.diverging palette (20, 150,center="1ight", as
_cmap=True),

vmin=-1, vmax=1,

square=True, # square cells
fmt=".2f", # 2 decimals
annot=True, # draw values at cell center
#linecolor='w', # white line separators

linewidths=1)

min/max for color ramp

PLOT.show ()

pearson correlation coefficient:

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

o 08
=
o
E - 04
E 062 -00

MIR

NDWI

i i i
Green Red MIR MOV

spearman correlation coefficient:

0.10 . I 08
0.07 . -04
0.14 BRIl -00

_IIIIIIIIIIIHiHIIIIHHI I‘
kendall correlation coefficient:

[
Blue Green MO
. [D-U

- 008 004 010 -—0.4
- 037 4037 00 -0.8

i i i i [
Elue Green Red MIR. MOV

Blue

Red Green

NIR

MDWVI

Blue

0.10

MIR Red Green

MOWVI

There's generally a high correlation among Blue, Green and Red and between NIR and NDVI,
suggesting that Random Forest is a good choice as it is robust to multicollinearity.

In [13]: # Rotation is a categorical variable with 3 different levels that encodes
the type of crop rotation
used in each quadrant. It is initally a string but it is easier if each
level is encoded as an integer
def tran Rotation(x):

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

data['Rotation'] =
data['Rotation'] =

if

X ==

1827 ¢

return 2

if x ==

'S3':

return 3

if x ==

'S4':

return 4

display(data.head(15))

data['Rotation'].apply(tran Rotation)
data['Rotation'] .astype ('category')

Quadrat Blue Green Red NIR NDVI Rotation SDS
0 1201 2460.222222 1932.222222 1331.666667 2046.555556 0.211617 4 1
1 1220 2420.555556 1881.000000 1252.222222 2003.444444 0.230743 4 1
2 1202 2438.000000 1897.888889 1321.555556 2104.444444 0.228514 4 1
3 1219 2374.222222 1848.333333 1208.111111 2070.666667 0.263072 4 0
4 1203 2428.777778 1875.444444 1295.222222 2167.777778 0.251965 4 1
5 1218 2414.222222 1850.666667 1208.888889 2093.666667 0.267907 4 1
6 1204 2439.444444 1883.222222 1309.111111 2209.888889 0.255975 4 0
7 1217 2424.666667 1837.666667 1210.333333 2084.777778 0.265376 4 0
8 1205 2430.222222 1861.777778 1308.000000 2305.555556 0.276059 4 0
9 1216 2412.111111 1829.666667 1209.333333 2106.222222 0.270509 4 0
10 1206 2418.000000 1885.777778 1329.555556 2240.777778 0.255220 4 0
11 1215 2381.555556 1869.666667 1222.333333 2123.555556 0.269352 4 0
12 1207 2427.222222 1887.222222 1342.444444 2242444444 0.251054 4 0
13 1214 2379.222222 1837.555556 1226.333333 2161.222222 0.275977 4 0
14 1208 2400.000000 1892.833333 1326.500000 2176.500000 0.242649 4 0

Part 2: Data analysis

e Data is randomly split into a training set and a test set.
e Here, 70% of the data is used for training and 30% for testing

In [14]
expl vars = ['Blue', 'Green',
#expl vars = ['Blue', 'Green',
resp var = "SDS"

print ("Predicting",
data[expl vars]
datal[resp var]

N =
y =

resp_var

4

'Red', 'NIR', 'NDVI',
'Red', 'NIR',
"from", expl vars)

Explanatory variables

Response variable

Predicting SDS from ['Blue',

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

'Green’',

'Red’,

'NIR',

"NDVI',

create separate data frames for Explanatory and Response variables:
'Rotation']
'"Rotation']

'Rotation']

Using Random Forest Models for SDS-Copy1

In

[15]:

from sklearn.model selection import train test split

Split dataset into training set and test set
SPLIT RND SEED = 12345
X train, X test, y train, y test = train test split (X, vy,
test size=0.3,
random state=SPLIT RND
_SEED) # 70% training and 30% test

print ("Using", len(X train), "quadrants for training,", len(y_ test), "quad
rants for testing")

Using 168 quadrants for training, 72 quadrants for testing

Training a Random Forest model

e The classifier (model) is trained on the training set and its predictions are tested using just the
test data set

e For this simple case, the rest of the parameters are using default values, but these will need to
be tuned (optimized) later

e We print out the classifier her just to shows its un-tuned parameters.

Import Random Forest Model
from sklearn.ensemble import RandomForestClassifier

Create a Gaussian Classifier with 500 trees
rf simple = RandomForestClassifier (n estimators=500,

oob score=True,

random state=12345, # random number to be used
, needed to reproduce the same result

verbose=False)

Train the model using the training sets
c simple = rf simple.fit (X train, y train)

printing rhe classifier object shows 1its parameters
print (c_simple)

RandomForestClassifier (bootstrap=True, class weight=None, criterion='gini'

4
max_ depth=None, max features='auto', max leaf nodes=None,

min impurity decrease=0.0, min impurity split=None,

min samples leaf=1, min samples split=2,

min weight fraction leaf=0.0, n estimators=500, n_ Jjobs=None,
oob_score=True, random state=12345, verbose=False,

warm start=False)

Tuning the Model

o Typically, instead of the default values a set of optimized parameter values are used, which
results in a optimized model (optimized by accuracy => heatmap)

e The tuning parameter values were calculated using a Grid-based search method with 5 fold
cross-validation results

o Details for optimizing the parameters, such a hyperparameter grid optimizations, are shown in

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1
Part 3.
e There, the best parameters are given in rf gridsearch.best params , which are shown

here in best params

In [18]: # classifier with optimized parameters
best params = {'max depth': 5, 'max features': 3, 'min samples leaf': 3, '
n_estimators': 20}

rf = RandomForestClassifier (**best params,
oob score=True,
random state=12345,
verbose=False)

Train the tuned model using the training sets
c = rf.fit (X train, y train)
print (c)

RandomForestClassifier (bootstrap=True, class weight=None, criterion='gini'

4
max depth=5, max features=3, max leaf nodes=None,

min impurity decrease=0.0, min impurity split=None,

min samples leaf=3, min samples split=2,

min weight fraction leaf=0.0, n estimators=20, n_ jobs=None,
oob_ score=True, random state=12345, verbose=False,

warm start=False)

Judging the prediction quality of the tuned model

¢ The following defines a set of functions that display different aspects of the quality of the

prediction
e To make the report visually more compact, the functions are run together at the end of the

definition cells.

Prediction accuracy

¢ Prediction accuracy represents the proportion of correctly classified healthy and disease

quadrats in all quadrats.
¢ Prediction accuracy also explains the ability of the random forest trained models to correctly

classified healthy and diseased quadrats.

In [19]: # Accuracy of SDS prediction in the training and testing dataset
def prediction accuracy(rf, X train, y train, X test, y test):
print ('"Accuracy on the training subset: {:.3f}'.format (rf.score(X trai

n, y train)))
print ("Accuracy on the test subset: {:.3f}'.format (rf.score(X test, y

test)))

Out of bag score and accuracy

e Within training dataset, 106 samples were randomly used for training, while 62 remained out-of-

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1
bag (OOB) samples.
e The Out-of-bag score is the accuracy measured on these OOB samples

In [20]: # Out of bag score and accuracy
from sklearn.metrics import accuracy score
def OOB score and accuracy(rf, X train, y train, X test, y test):
y pred = rf.predict (X test)
accuracy = accuracy score(y test, y pred)
print (£'Out-of-bag score estimate: {rf.oob_score :.3}'")
print (f'Mean accuracy score: {accuracy:.3}')

Confusion matrix

A confusion matrix is a table that is used to evaluate the quality of the predictions made be the model
from the test data set, compared the the ground truth. O represents healthy quadrats and 1
represents diseased quadrats.

The 2 x 2 matrix shows the number of:

¢ true positives (TP): disease was predicted (1), and ground truth confirmes this (1).

¢ true negatives (TN): no disease was predicted (0), and ground truth confirmes this (0).

o false positives (FP): disease was predicted (1), but ground truth refutes this (0) (Type | error)

o false negatives (FN): disease was not predicted (0), but ground truth refutes this (1) (Type Il
error)

In [21]: from sklearn.metrics import confusion matrix

Confusion (error) Matrix of Prediction
def plot confusion matrix (X test, y test):

predict y from test
y pred = rf.predict (X test)
cm = PD.DataFrame (confusion matrix(y test, y pred))

print ('Confusion (error) matrix of prediction')
print (cm)

use seaborn to plot matrix as heatmap
PLOT.rc ('font', size=16)
p = SEA.heatmap (cm,

annot=True,

cbar=False,

cmap="0Oranges")
PLOT.ylabel ('Ground Truth SDS'")
PLOT.xlabel ('Predicted SDS')

return p

Classification report

o Classification report provides statistics of precision, specificity and sensitivity.

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/

Using Random Forest Models for SDS-Copy1

Precision: Proportion of correct classifications for each class.

Specificity: Percentage of correctly classified healthy quadrats.

Again, 0 represents healthy quadrats and 1 represents diseased quadrats
Specificity = recall of 0

Sensitivity = recall of 1

In [22]: from sklearn.metrics import classification report

def print classification report (X test, y test):

y pred = rf.predict (X test)

stats = classification report(y test, y pred,
labels=None,
target names=["Healty", "SDS"],
sample weight=None,
digits=2,
output dict=False)

print ("Classification report:\n")

print (stats)

ROC curve

A Receiver Operator Characteristic (ROC) curve is a graphical plot used to show the diagnostic
ability of a classifier (model).

In [23]: from sklearn.datasets import make classification
from sklearn.metrics import roc curve
from sklearn.metrics import roc auc score

def plot ROC curve (X test, y test):

print ("Receiver Operator Characteristic (ROC) curve")
predict probabilities
probs = rf.predict proba (X test)

keep probabilities for the positive outcome only
probs = probs[:, 1]

calculate AUC
auc = roc_auc_score(y test, probs)
print ('AUC: %.3f' % auc)

calculate roc curve
fpr, tpr, thresholds = roc curve(y test, probs)

plot no skill
p = PLOT.plot ([0, 1], [0, 1], linestyle='--")

plot the roc curve for the model
PLOT.plot (fpr, tpr, marker='.")

PLOT.xlabel ('False positive rate (1 - Specificity)')
PLOT.ylabel ('True positive rate (Sensitivity)')
PLOT.title ('ROC Curve')

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

In

In

(247 :

[257:

return (p)

Kappa statistics

Cohen's Kappa is the measure of how well the classifier performed as compared to how well it would
have performed simply by chance.

from sklearn.metrics import cohen kappa score

def kappa statistics (X test, y test):
y pred = rf.predict (X test)
cohen score = cohen kappa score(y test, y pred)
print ("Kappa score:", cohen score)

Variable permutation importance

¢ Predictive importance of all explanatory variables was measured using the permutation method.

¢ In this method, random forest model, first, calculates prediction accuracy in the out-of-bag (OOB)
observations.

¢ Then it randomly shuffles values of a predictor variable to break the association between
response and predictor values and recalculate the accuracy in OOB observations.

e Then it calculates the difference in model accuracy before and after shuffling.

¢ If the predictor never had any meaningful relationship with the response, shuffling its values will
produce very little change in the model accuracy.

e However, if a predictor was strongly associated with the response, permutations should create a
significant decrease in the accuracy.

Variable importance
def feature importance(rf, X test):
print ("Variable importance:")

fi = PD.DataFrame ({'variable name': list (X test.columns),
'importance': rf.feature importances })
return fi.sort values('importance', ascending = False)

Permutation Importance
try:
from eli5.sklearn import PermutationImportance
except:
def permutation importance (X test, y test):
print ("Variable permutation importance not available, eli5 not in
stalled")
else:
def permutation importance (X test, y test):
print ("Variable permutation importance:")
perm = PermutationImportance (rf).fit (X test, y test)
p = eli5.show weights(perm, feature names=X.columns.tolist())
return p

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

Predicting SDS from the testing dataset using a tuned
classifier

print ("Predicting", resp var , "from", expl vars)
print ("Using", len(X train), "quadrants for training,", len(y test), "quad
rants for testing")

classifier with optimized parameters
best params = {'max depth': 2 , 'max features': 3, 'min samples leaf': 3,
'n estimators': 20}
rf = RandomForestClassifier (**best params,
oob score=True,
random state=12345,
verbose=False)
c = rf.fit (X train, y train)
print (c)

Predicting SDS from ['Blue', 'Green', 'Red', 'NIR', 'NDVI', 'Rotation']
Using 168 quadrants for training, 72 quadrants for testing
RandomForestClassifier (bootstrap=True, class weight=None, criterion='gini'
4

max depth=2, max features=3, max leaf nodes=None,

min impurity decrease=0.0, min impurity split=None,

min samples leaf=3, min samples split=2,

min weight fraction leaf=0.0, n estimators=20, n_ jobs=None,

oob_score=True, random state=12345, verbose=False,

warm start=False)

Show quality for tuned classifier (trained on training data) in predicti
ng the test data

smatplotlib inline

prediction accuracy(rf, X train, y train, X test, y test)
OOB_score_ and accuracy(rf, X train, y train, X test, y test)

print ()

PLOT.show (plot confusion matrix (X test, y test))
print ()

print classification report (X test, y test)
print ()

#The ROC curve and Area under curve (AUC) value of 0.92 indicates that our
model detected SDS very accurately.

PLOT.show (plot ROC curve (X test, y test))

print ()

kappa statistics (X test, y test)
print ()

display (feature importance(rf, X test))
print ()

display (permutation importance (X test, y test));

Accuracy on the training subset: 0.792
Accuracy on the test subset: 0.847
Out-of-bag score estimate: 0.625

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

Mean accuracy score: 0.847

Confusion (error) matrix of prediction

0 1
0 21 3
1 8 40
A 21
G_
U
=
]
=
-
||_
=
=
=3
2 - 8
]

Predicted SD5S

Classification report:

precision recall fl-score support
Healty 0.72 0.88 .79 24
SDS 0.93 0.83 .88 48
micro avg 0.85 0.85 .85 72
macro avg 0.83 0.85 0.84 72
weighted avg 0.86 0.85 0.85 72
Receiver Operator Characteristic (ROC) curve
AUC: 0.898
= ROC Curve
=] =
E 1-0 r— . -
= . — .
L r -
c 0.8 L~
@ -
g | I
[l D.E T JJ’J
et b -
18] |] -
— -
w 041 | L
::" .rf
L g -
2021
o .
al] L-~
500"
= 00 02 04 06 0.8 1.0

False positive rate (1 - Specificity)

Kappa score: 0.6732673267

Variable importance:

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

326732

Using Random Forest Models for SDS-Copy1

variable name importance

5 Rotation 0.466614
4 NDVI 0.184096
2 Red 0.126114
0 Blue 0.097795
3 NIR 0.086564
1 Green 0.038816

Variable permutation importance:

Weight Feature
0.2139 £ 0.0624 Rotation
0.0667 £0.0111 NDVI
0.0472 £ 0.0416 Red
0.0417 £ 0.0556 Blue
0.0333+0.0283 NIR
0.0250 £ 0.0324 Green

Plotting individual decision trees

e This visualizes a single decision tree based on the training data set (168 quadrats).

¢ Within the training dataset, the majority (e.g. 103) samples were randomly used for training,
while the remaining samples (e.g. 65) are out-of-bag (OOB) samples.

e The OOB samples are used for calculating variable importance.

e The specific number of OOB samples varies slighty within the trees comprising the model

¢ this plots the graph of a single decision tree.

In [31]: from IPython.display import Image
from sklearn.tree import export graphviz
import pydotplus
from io import StringIO

show simple inlined images for plots, etc.
tmatplotlib inline

graph tree 1 of rt
def graph tree(rf, 1i):
print ("Showing tree", 1)

Extract the tree
estimator = rf.estimators [i]
#print (estimator)

Create a .dot file
dot data buffer = StringIO() # in-memory 'file'
export graphviz (estimator,
out file=dot data buffer,
feature names=X.columns, #
class names = ['healthy', 'diseased'],
rounded=True,
proportion=False,

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1
precision=2,
filled=True,
special characters=True)

dotgraph = pydotplus.graph from dot data(dot data buffer.getvalue())

save the graph as a png file
#filename = "tree graph" + str(i) + ".png"
#dotgraph.write png(filename) # save as png file to disk

Show and image of the tree

#img = Image (filename=filename) # use file written to disk
img = Image (dotgraph.create png()) # or directly from buffer
display (img)

print ("Total of ", c¢.n estimators, "trees were created")
graph tree(rf, 0) # plot a single tree, e.g. Tree 0, change to see other
trees

show all trees
#for i in range(0, c.n estimators): graph tree(rf, i) # plot range of tree
s

Total of 20 trees were created
Showing tree 0

NDVI = 0.22
gini=0.44
samples = 103
value = [54, 114]
class = diseased

True {alse

Red = 1340.78
gini =048
samples = 74
value = [46, 69]
class = diseased

l

gini=0.48 gini=04 gini=045
samples =5 samples =51 samples = 23
value = [4, 6] value =[21, 56] value = [25, 13]
class = diseased class = diseased class = healthy

106 samples were randomly used for training, while 62 remained out-of-bag (OOB)

Reading a Decision Tree:

We are going to use this example of a decision tree, which should be very similar to a tree in the
model used above.:

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

Rotation = 2.5
gini= 047
samples = 108
value = [62, 106]
class = diseased

True False

Blue = 2493.67
gini=0.5
samples =71
value =[61, 50]
class = healthy

EN

gini = 0.38 gini=048 gini = 0.31
samples =4 samples =47 samples = 24
value =[1, 3] value =[27, 42] value =[34, 8]

class = diseased class = diseased class = healthy

e The first line of a node is the variable and a threshold used for the decision.

¢ Note that Rotation is a categorical variable but its values S2, S3, S4 were converted into
numbers (2,3,4) before data analysis. Rotation < 2.5 therefore splits by Rotation values 2 and 3
vs 4 (4 > 3).

e (leaf nodes don't have a line with the variable name.)

e gini: Gini is the splitting criteria that we used in our model. It is the purity (or impurity) measure of
a variable for best splitting the response variable. The minimum value of gini is 0 which means
that all observations belong to one class. However, the maximum value of gini is 0.5 which
means that both class (diseased and healthy) are equally distributed. The lower the gini value,
the darker a node's color is, nodes with gini values of 0.5 are white (neutral)

e samples: Total number of samples at that node. After each split, subsequent nodes have less
and less samples

e value: [d, h] Number of samples at that node per category with diseased (d) left and health
(h) right.

e class: the value of the response variable for this node. Here: Healty nodes are a shade of
orange, diseased nodes a shade of blue. For non-leaf nodes, this would be the outcome if no
further splits were done.

Part 3: Hyperparameter tuning

Grid Search with Cross Validation

e Gridsearch generates a number of "combinations" for a set of parameters given to the
RandomForestClassifier and tests each to arrive an optimal value for each parameter.

e For example, we set the n_estimator parameter (i.e., the number of trees) to 10, 20, 50 and 100.

e The reason for finding the best "small" number is to prune the tree to avoid overfitting.

e GridSearch may take quite a while depending on the number of values given to try for each
parameter, so you may want to skip this part!

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

In

In

In

In

[

[

]:

1:

from sklearn.model selection import GridSearchCV
import pandas as pd

model = RandomForestClassifier (n jobs=-1, random state=12345, verbose=2)
Important parameters to tune

n estimators (“ntree” in R)

max features (“mtry” in R)

min sample leaf (“nodesize” in R)

grid = {'n estimators': [10, 20, 50, 100],
'max features': [2, 3, 4],
'max depth': [5, 6, 7, 8, 107,

'min samples leaf': [1, 3, 5, 7,
GridSearchCV (estimator=model,
param _grid=grid,
scoring='roc auc',
n_ jobs=-1,
cv=5,
verbose=2,
return train score=True)

rf gridsearch =

rf gridsearch.fit (X train, y train)

and after some time...
df gridsearch = pd.DataFrame(rf gridsearch.cv_results)

#Best parameters

best n estimators value = rf gridsearch.best params ['n estimators']
best max features value = rf gridsearch.best params ['max features']
best max depth value = rf gridsearch.best params ['max depth']

best min samples leaf = rf gridsearch.best params ['min samples leaf']

#Best AUC score
best score = rf gridsearch.best score
print (best score)

rint ("Best parameters are:", rf gridsearch.best params)
p p 9 - _

Heatmaps of AUC values for combinations of parameters used for
tuning

e The following shows heatmaps of the AUC values that demonstrate how the optimization arrives
at its "best" solution
e The 2 dimensions shown for each heatmap are two of the types of parameters listed above

estimators list = list(rf gridsearch.cv results ['param n estimators'].dat
a)

max features list = list(rf gridsearch.cv_results ['param max features'].d
ata)

max depth list = list(rf gridsearch.cv _results ['param max depth'].data)

min samples leaf list =
leaf'] .data)

list (rf gridsearch.cv_results ['param min samples

import seaborn as sns

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1
import matplotlib.pyplot as plt

print ("AUC values for Estimators (number of trees) vs all other types of p
arameters")

sns.set style("whitegrid")

fig = plt.figure(figsize=(25, 15), dpi=300)
plt.rc('font', size=12)
fig.subplots adjust (hspace=0.4, wspace=0.4)

n estimators vs Maximum depth

plt.subplot (3, 2, 1)

data = pd.DataFrame (data={'Estimators': estimators list, 'Max Depth': max
depth list,

'AUC': rf gridsearch.cv results ['mean train sco
re'l})
data = data.pivot table(index='Estimators', columns='Max Depth', values='A
uc')

sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Training data')

plt.subplot (3, 2, 2)
data = pd.DataFrame (data={'Estimators': estimators list, 'Max Depth': max
depth list,

'AUC': rf gridsearch.cv results ['mean test scor
e'l})
data = data.pivot table(index="'Estimators', columns='Max Depth', values='A
uc')
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Test data')

n _estimators vs Maximum features
plt.subplot (3, 2, 3)
data = pd.DataFrame (data={'Estimators': estimators list, 'Max Features': m
ax features list,
'AUC': rf gridsearch.cv results ['mean train sco
re'l})
data = data.pivot table(
index='Estimators', columns='Max Features', wvalues='AUC')
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Training data')

plt.subplot (3, 2, 4)
data = pd.DataFrame (data={'Estimators': estimators list, 'Max Features': m
ax_ features list,
'AUC': rf gridsearch.cv results ['mean test scor
e'l})
data = data.pivot table(
index="'Estimators', columns='Max Features', values='AUC')
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Test data')

n estimators vs Minimum sample leaf
plt.subplot (3, 2, 5)
data = pd.DataFrame (data={'Estimators': estimators list, 'Minimum Samples
at Leaf node':

min samples leaf list, 'AUC': rf gridsearch.cv r
esults ['mean train score']})
data = data.pivot table(

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1
index='Estimators', columns='Minimum Samples at Leaf node', values='AU
c')
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Training data')

plt.subplot (3, 2, 6)
data = pd.DataFrame (data={'Estimators': estimators list, 'Minimum Samples
at Leaf node':
min samples leaf list, 'AUC': rf gridsearch.cv r
esults ['mean test score'l]}l)
data = data.pivot table(
index="'Estimators', columns='Minimum Samples at Leaf node', values='AU

c")
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Test data'):;

In []: | print ("AUC values for combinations of Max Features vs all other types of p
arameters")

sns.set style("whitegrid")

fig = plt.figure(figsize=(25, 15), dpi=300)
plt.rc('font', size=12)
fig.subplots adjust (hspace=0.4, wspace=0.4)

Maximum features vs Maximum depth
plt.subplot (3, 2, 1)
data = pd.DataFrame (data={'Max Features': max features list, 'Max Depth':
max depth list,
'AUC': rf gridsearch.cv results ['mean train sco

re'l})

data = data.pivot table(index='Max Features',

columns='Max Depth', values='AUC')

sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Training data')

plt.subplot (3, 2, 2)
data = pd.DataFrame (data={'Max Features': max features list,

'Max Depth': max depth list, 'AUC': rf gridsearc
h.cv _results ['mean test score']})
data = data.pivot table(index='Max Features',

columns="'Max Depth', values='AUC')
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Test data')

Maximum features vs Minimum sample leaf
plt.subplot (3, 2, 3)
data = pd.DataFrame (data={'Max Features': max features list, 'Minimum Samp
les at Leaf node':
min samples leaf list, 'AUC': rf gridsearch.cv r

esults ['mean train score'l})
data = data.pivot table (index='Max Features',

columns='Minimum Samples at Leaf node', values='AU
c')
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Training data')

plt.subplot (3, 2, 4)
Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

Using Random Forest Models for SDS-Copy1

data = pd.DataFrame (data={'Max Features': max features list, 'Minimum Samp
les at Leaf node':
min samples leaf list, 'AUC': rf gridsearch.cv r
esults ['mean test score'l]})
data = data.pivot table(index='Max Features',
columns="'Minimum Samples at Leaf node', values='AU

c")
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Test data');

In []: print("AUC values for Max depth vs Minimum sample leaf")

sns.set style("whitegrid")

fig = plt.figure(figsize=(25, 15), dpi=300)
plt.rc('font', size=12)
fig.subplots adjust (hspace=0.4, wspace=0.4)

Maximum depth vs Minimum sample leaf
plt.subplot (2, 2, 1)
data = pd.DataFrame (data={'Max Depth': max depth list, 'Minimum Samples at
Leaf node':
min samples leaf list, 'AUC': rf gridsearch.cv r
esults ['mean train score']})
data = data.pivot table(
index="'Max Depth', columns='Minimum Samples at Leaf node', values='AUC
")
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Training data')

plt.subplot (2, 2, 2)
data = pd.DataFrame (data={'Max Depth': max depth list, 'Minimum Samples at
Leaf node':
min samples leaf list, 'AUC': rf gridsearch.cv r
esults ['mean test score'l]}l)
data = data.pivot table(
index="'Max Depth', columns='Minimum Samples at Leaf node', values='AUC
")
sns.heatmap (data, fmt=".3f", annot=True, cmap="Y1lGnBu").set title('AUC for
Test data'):;

In []:

Using Random Forest Models for SDS.pdf[2019-12-12 4:10:01 PM]

	Local Disk
	Using Random Forest Models for SDS-Copy1

